3.1.32 \(\int (a+b \log (c \sqrt {d+e x}))^p \, dx\) [32]

Optimal. Leaf size=88 \[ \frac {2^{-p} e^{-\frac {2 a}{b}} \Gamma \left (1+p,-\frac {2 \left (a+b \log \left (c \sqrt {d+e x}\right )\right )}{b}\right ) \left (a+b \log \left (c \sqrt {d+e x}\right )\right )^p \left (-\frac {a+b \log \left (c \sqrt {d+e x}\right )}{b}\right )^{-p}}{c^2 e} \]

[Out]

GAMMA(1+p,-2*(a+b*ln(c*(e*x+d)^(1/2)))/b)*(a+b*ln(c*(e*x+d)^(1/2)))^p/(2^p)/c^2/e/exp(2*a/b)/(((-a-b*ln(c*(e*x
+d)^(1/2)))/b)^p)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2436, 2336, 2212} \begin {gather*} \frac {2^{-p} e^{-\frac {2 a}{b}} \left (a+b \log \left (c \sqrt {d+e x}\right )\right )^p \left (-\frac {a+b \log \left (c \sqrt {d+e x}\right )}{b}\right )^{-p} \text {Gamma}\left (p+1,-\frac {2 \left (a+b \log \left (c \sqrt {d+e x}\right )\right )}{b}\right )}{c^2 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Log[c*Sqrt[d + e*x]])^p,x]

[Out]

(Gamma[1 + p, (-2*(a + b*Log[c*Sqrt[d + e*x]]))/b]*(a + b*Log[c*Sqrt[d + e*x]])^p)/(2^p*c^2*e*E^((2*a)/b)*(-((
a + b*Log[c*Sqrt[d + e*x]])/b))^p)

Rule 2212

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(-F^(g*(e - c*(f/d))))*((c
+ d*x)^FracPart[m]/(d*((-f)*g*(Log[F]/d))^(IntPart[m] + 1)*((-f)*g*Log[F]*((c + d*x)/d))^FracPart[m]))*Gamma[m
 + 1, ((-f)*g*(Log[F]/d))*(c + d*x)], x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 2336

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Dist[1/(n*c^(1/n)), Subst[Int[E^(x/n)*(a + b*x)^p
, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[1/n]

Rule 2436

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rubi steps

\begin {align*} \int \left (a+b \log \left (c \sqrt {d+e x}\right )\right )^p \, dx &=\frac {\text {Subst}\left (\int \left (a+b \log \left (c \sqrt {x}\right )\right )^p \, dx,x,d+e x\right )}{e}\\ &=\frac {2 \text {Subst}\left (\int e^{2 x} (a+b x)^p \, dx,x,\log \left (c \sqrt {d+e x}\right )\right )}{c^2 e}\\ &=\frac {2^{-p} e^{-\frac {2 a}{b}} \Gamma \left (1+p,-\frac {2 \left (a+b \log \left (c \sqrt {d+e x}\right )\right )}{b}\right ) \left (a+b \log \left (c \sqrt {d+e x}\right )\right )^p \left (-\frac {a+b \log \left (c \sqrt {d+e x}\right )}{b}\right )^{-p}}{c^2 e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 88, normalized size = 1.00 \begin {gather*} \frac {2^{-p} e^{-\frac {2 a}{b}} \Gamma \left (1+p,-\frac {2 \left (a+b \log \left (c \sqrt {d+e x}\right )\right )}{b}\right ) \left (a+b \log \left (c \sqrt {d+e x}\right )\right )^p \left (-\frac {a+b \log \left (c \sqrt {d+e x}\right )}{b}\right )^{-p}}{c^2 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Log[c*Sqrt[d + e*x]])^p,x]

[Out]

(Gamma[1 + p, (-2*(a + b*Log[c*Sqrt[d + e*x]]))/b]*(a + b*Log[c*Sqrt[d + e*x]])^p)/(2^p*c^2*e*E^((2*a)/b)*(-((
a + b*Log[c*Sqrt[d + e*x]])/b))^p)

________________________________________________________________________________________

Maple [F]
time = 0.04, size = 0, normalized size = 0.00 \[\int \left (a +b \ln \left (c \sqrt {e x +d}\right )\right )^{p}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*ln(c*(e*x+d)^(1/2)))^p,x)

[Out]

int((a+b*ln(c*(e*x+d)^(1/2)))^p,x)

________________________________________________________________________________________

Maxima [A]
time = 0.05, size = 60, normalized size = 0.68 \begin {gather*} -\frac {2 \, {\left (b \log \left (\sqrt {x e + d} c\right ) + a\right )}^{p + 1} e^{\left (-\frac {2 \, a}{b} - 1\right )} E_{-p}\left (-\frac {2 \, {\left (b \log \left (\sqrt {x e + d} c\right ) + a\right )}}{b}\right )}{b c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(e*x+d)^(1/2)))^p,x, algorithm="maxima")

[Out]

-2*(b*log(sqrt(x*e + d)*c) + a)^(p + 1)*e^(-2*a/b - 1)*exp_integral_e(-p, -2*(b*log(sqrt(x*e + d)*c) + a)/b)/(
b*c^2)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(e*x+d)^(1/2)))^p,x, algorithm="fricas")

[Out]

integral((b*log(sqrt(x*e + d)*c) + a)^p, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \log {\left (c \sqrt {d + e x} \right )}\right )^{p}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*ln(c*(e*x+d)**(1/2)))**p,x)

[Out]

Integral((a + b*log(c*sqrt(d + e*x)))**p, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(e*x+d)^(1/2)))^p,x, algorithm="giac")

[Out]

integrate((b*log(sqrt(x*e + d)*c) + a)^p, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (a+b\,\ln \left (c\,\sqrt {d+e\,x}\right )\right )}^p \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*log(c*(d + e*x)^(1/2)))^p,x)

[Out]

int((a + b*log(c*(d + e*x)^(1/2)))^p, x)

________________________________________________________________________________________